A Multi-Histogram Clustering Approach toward Markov Random Field for Foreground Segmentation

نویسندگان

  • Wenjia Yang
  • Lihua Dou
  • Juan Zhan
چکیده

This paper presents a Bayesian approach for foreground segmentation in monocular image sequences. To overcome the limitations of background modeling in dealing with pixel-wise processing, spatial coherence and temporal persistency are formulated with background model under a maximum a posterior probability (MAP)-MRF framework. Fuzzy clustering factor was introduced into the prior energy of MRFs for the new implementation scheme, where contextual constraints can be adaptively adjusted in terms of feature cues. Experimental results for several image sequences are provided to demonstrate the effectiveness of the proposed approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cluster-Based Image Segmentation Using Fuzzy Markov Random Field

Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...

متن کامل

Smooth Image Segmentation by Nonparametric Bayesian Inference

A nonparametric Bayesian model for histogram clustering is proposed to automatically determine the number of segments when Markov Random Field constraints enforce smooth class assignments. The nonparametric nature of this model is implemented by a Dirichlet process prior to control the number of clusters. The resulting posterior can be sampled by a modification of a conjugate-case sampling algo...

متن کامل

Consistent Foreground Co-segmentation

When the foreground objects have variegated appearance and/or manifest articulated motion, not to mention the momentary occlusions by other unintended objects, a segmentation method based on single video and a bottom-up approach is often insufficient for their extraction. In this paper, we present a video co-segmentation method to address the aforementioned challenges. Departing from the object...

متن کامل

Over-Segmentation Based Background Modeling and Foreground Detection with Shadow Removal by Using Hierarchical MRFs

In this paper, we propose a novel over-segmentation based method for the detection of foreground objects from a surveillance video by integrating techniques of background modeling and Markov Random Fields classification. Firstly, we introduce a fast affinity propagation clustering algorithm to produce the over-segmentation of a reference image by taking into account color difference and spatial...

متن کامل

Smooth Foreground-Background Segmentation for Video Processing

We propose an efficient way to account for spatial smoothness in foreground-background segmentation of video sequences. Most statistical background modeling techniques regard the pixels in an image as independent and disregard the fundamental concept of smoothness. In contrast, we model smoothness of the foreground and background with a Markov random field, in such a way that it can be globally...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Image Graphics

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2011